
 

 

 

 

 

 

 

 

DigiTwin Messaging Service 

V1.6 

 

 

 

 

 



 

 

Contents 
Introduction ..................................................................................................................................... 3  

DMS-Server Configuration ............................................................................................................. 8 

DMS-Viewer ................................................................................................................................... 8 

Setting up the DMS-Cloud-Client ................................................................................................ 10  

Setting up the DMS-Edge-Client .................................................................................................. 12 

How DMS works .......................................................................................................................... 14 

DMS-Listener ............................................................................................................................... 16  

How the licensing works ............................................................................................................... 16 

References: .................................................................................................................................... 17 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Introduction 
DigiTwin Messaging Service aims to help IoT devices or any other private cloud endpoints to 
communicate with each other or the backend as required with the help of inexpensive IRC APIs. 
This will not only help in secure communication between the entities but also, have multiple 
entities as the project requires.  

The DigiTwin Messaging Service (DMS), is quite simple to use. There are a few parts for this 
product along with a supervision Client 

1. DMS-Cloud-Client 
2. DMS-Edge Client 
3. DMS-Server 
4. DMS-Viewer  
5. DMS-Listener 

 

The DMS is distributed as a docker image. Within the docker image we have all the required 
parts of the required for the entire DMS topology. 

The Typical setup is shown in Figure 1.  

The DMS-Server is actually an IRC server that facilitates real-time text communication between 
users over the Internet. It operates as the central hub in the IRC network, managing connections 
from clients, routing messages, and hosting channels (chat rooms) for group discussions. Users 
connect via IRC clients using a server's IP address or domain. IRC servers are lightweight, 
customizable, and can support numerous simultaneous users. Popular for community 
discussions, gaming, and technical support, they form decentralized networks where multiple 
Servers link to enable larger-scale communication across distributed groups worldwide. 



 

The DMS cloud-client and the edge-clients are clients in IRC that are applications that allow 
users to connect to an IRC server for real-time communication. Using the configurations to 
connect to the DMS-Server, these clients would be able to send as well as received messages. 
The messages can in-turn be used for later processing by other applications as per logic. 

The figure below describes the communication between Cloud-Client and the Edge-Clients from 
within VPN as well as outside in the cloud.  



 

 

Figure 1 



 

The communication occurs through server via channels. Users connect to an IRC server using a 
client and join channels, which are virtual chat rooms identified by names starting with `#` (e.g., 
`#general`). Channels host group discussions, while private messaging allows one-on-one chats. 
Messages sent in a channel are broadcast to all participants, fostering real-time conversations. 
Channels can be public, private (accessible by invitation), or password-protected. The 
decentralized nature allows multiple servers to link, forming networks. Several terms like clients 
and channels will be used later in the documentation as well.  

Note: DMS is supported only on docker as of now.  

Contents of the DMS docker 
The DMS docker is provided on AWS as well as on our Baideac license portal. Upon 
downloading this docker image and logging in, the following contents can be found: 

1. DMS-Cloud-Client - This is an executable that is Run when the docker container is 
running as a cloud client. This can be done based on the configurations in the .env file 

2. DMS-Edge-Client - This is an executable that is Run when the docker container is 
running as an edge client. This can be done based on the configurations in the .env file 

3. DMS-Listener - This is the folder containing a sample application that simply prints the 
messages routed by the DMS clients on to the console. Inside this folder there is an 
executable. 

4. DMS-Server - This contains an executable that will install the DMS-Server. It also 
contains a .env file which can be edited by hand. This file is filled when the DMS-Server 
executable is Run and the prompts are filled. (more on this later)   

5. DMS-Viewer - Contains an executable that will install the DMS-Viewer. This is a 
standard supervision tool that can be used by any user to see that Communications taking 
place between the clients 

6. channels.json - This is a file provides a list of the channels which a client must join at 
startup. This file also contains routes per channel. More on this later) 

7. licenseHandler - This is an executable that simply helps in verifying the licence keys 
8. start.sh/restart.sh - These are scripts which help in starting a restarting the executables 

when a change is made in the .env file 
9. .env - This is the configuration file in which all the settings are present. (more on this 

later) 

As it can be seen that that all the components in a typical DMS topology is present inside the 
single docker, we will need to copy the different non client contents outside this docker and set 
up in the respective host. As a described in the Figure 1, in an ideal scenario, there would be a 
host each for the following 



 

1. The DMS cloud client (Currently having multiple cloud clients in a single topology is not 
supported in this release) 

2. Each DMS edge clients  
3. DMS server 

The DMS listener, if used, must be in the respective clients' host such that it is able to print out 
the messages on the console. 

The DMS viewer can be present in a separate host(s), or can be in any of the host machines 
among the clients are the DMS server. 

To be able to access these files, the docker image must be first run. It is assumed that the first 
docker container would be for the DMS-Cloud-Client. The command to run this is  

sudo docker run -d --add-host=host.docker.internal:host-gateway -p 45000:45000 digitwin-
docker  

The description of the attributes are as follows: 

 --add-host=host.docker.internal:host-gateway - this provides a way to send data from 
within the docker to the host. This is important and should not be omitted.  

 -p 45000:45000 - this tells the port mapping of the docker to the host machine. This is 
present in the format of < port of the host machine which is listening for any connection 
request to be routed to the docker>:< the exposed port from within the docker container>  

 digitwin-docker - this is the name of the docker image 

This will start the docker. One can access the docker container ID with the following command  

sudo docker ps 

 

The above image shows the response. 

The docker must be logged into such that the configurations can be made. The command to log 
inside the docker is as follows  

sudo docker exec -it <docker container-id> bash 

This will take you straight inside the docker. Basic ubuntu commands will work here. The above 
folders structure can be found in here.  



 

To set up the entire topology, we must setup clients and all the other entities. Thus, as the first 
step we must start configuring the DMS-Server and the DMS-Viewer.  

For this, the DMS-Server and the DMS-Viewer folders can be copied to the host machine from 
within the docker with the following command. 

sudo docker cp <container-id>:/app/DMS-Server . 
sudo docker cp <container-id>:/app/DMS-Viewer . 

This will copy the DMS-Server and the DMS-Viewer to the host machine. This can now be 
copied to a different host. Let's start configuring the DMS-Server 

DMS-Server Configuration 
The DMS-Server Folder has 1 single executable: DMS-Server. Upon executing this application, 
all the necessary package including the docker is installed. Finally, it asks for 3 inputs to start the 
server 

1. URL : This is the public available DNS or IP that is required to connect to this server. It 
must accessible from anywhere. 

2. Port : The port on which the Server will accept connections 
3. Password : The password is required to prevent unauthorized connections to the server. 

This Password must be used by all the clients who are connect to this Server.  

Once executed, the server will start running. Now, any client with the correct credentials can 
connect to the DMS-Server that we set.  

Note: As this is an IRC server following the protocols of IRC, a user may choose to set up 
another IRC server and connect the clients. While this is completely possible, Baideac 
Support Team will not be able to support any other IRC server. 

For more help, please have check out the video on the site.  

Now before connecting any client, we must check if the DMS-Server is correctly set up or not. 
For this, we can easily set up the DMS-Viewer. 

DMS-Viewer  
Many a times, one may need to supervise how the entities are communicating with each other. 
To supervise the communications, one can quite easily refer to any opensource IRC client. With 



 

some easy steps, it is quite simple to connect with the servers and join any new channel to 
supervise.  
 
Baideac is providing an out of the box client for anyone’s usage without the hassle of 
downloading and installing a new client.  
 
The steps to configure are quite easy. Simply copy the folder DMS-Viewer folder to the host and 
execute the application.  
 
At the time of execution, all the required packages will be installed along with the required items 
including port, nickname, URL as well as the password. It will ask for channels as well to 
connect to at startup. Note, the channels cannot be blank. (Please note: the length of the 
nickname must no exceed 40 characters. If it is, the name would be truncated) 
 
Once, the DMS-Viewer runs, one will see a UI loading with the previous clients also showing 
up.  
 
That is all!! you would now be able to use commands “/join #channel=name” to connect to any 
other channel as well and supervise the communication.  
 
At anytime, one may use “/quit” or /exit to close the application.  

 

Now that we can be assured that the DMS-Server is running correctly, let us configure the DMS-
Cloud-Client. 

 



 

 

Setting up the DMS-Cloud-Client 
The DMS-Cloud-Client is logically supposed be the brain in the topology. In an ideal scenario, 
this client would be sending commands to the edge clients. As mentioned earlier, currently 
having more than one cloud client in the same topology is not possible, and if set up, it may lead 
to unknown behaviours. The DMS-Cloud-Client can send messages it has received over a rest 
call. This rest call can be from outside the docker. 

Before running, we must understand the different configurations. As we know, in the IRC 
Server, one can log in to different channel for communications, be it a one-to-one or a broadcast 
channel for communication with a larger set of clients, we have provided a Json file named 
“channel.json” to provide this list of channels which the executable must join at start up. Upon 
receiving a message on a certain channel, the messages can also be routed to other endpoints as 
required. These routes can be found in the same Json file.  

We will have more explanations in the “How DMS works” section.  

The json file looks like this 

 

 

Under channels, we define all the channels the IRC client must join at startup. Each channel has 
routes with the endpoint name and the port which are added such that, any message coming on 
the channels will be routed automatically there.  

Now we must configure the .env file to configure which IRC server to connect to, the port on 
which it must listen for the requests and others.  



 

The fields to be filled for the DMS-Cloud-Client env file are: 

1. DMS_IRC_SERVER= <the IRC Server URL> 
2. DMS_IRC_PASSWORD=<Password if any, if no password is there, leave this blank> 
3. DMS_IRC_PORT=<The IRC port to connect to. This is defined while setting up the 

DMS-Server> 
4. DMS_IRC_NICK=<the IRC nickname that will appear in the IRC channel. It must be 

unique such the one can distinguish between other devices> 
5. SERVER_LISTENER_PORT= this is the listening port where one can send their 

requests to send a message to the DMS-Server. (more on this in the “How DMS works” 
section). Currently, in the docker version, this is not possible to change. We request you 
to refrain from making any change here.  

6. SWEEP_INTERNAL=Sweep interval within which the channel.json file will be parsed 
for updates on the new additional channels or routes (More on this in the “How DMS 
works Sections”) 

7. LICENSE_KEY= This is the license key that can be fetched from the Baideac license 
portal. For the cloud client, this is a must 

8. PRODUCT_ID= This is the Product ID that can be fetched from the Baideac license 
portal. For the any client, this is a must. 

9. HASH_AUTOGENERATE= For the cloud client, this is not required 
10. EDGE_CLIENT_ID= For the cloud client, this is not required 
11. IS_CLOUD_CLIENT= This is a flag that denotes whether this client is a cloud Client or 

an edge client. Since we are setting up a cloud client we must market as YES 
12. DOCKER= For now, since there is no executable version, mark this as “true” 
13. VERSION= The version number of this version of DMS 

 

In order to check the version from outside the docker, is the following command.  

sudo docker exec -it <container ID> cat .env | grep VERSION 

A typical .env file looks like this 
 



 

 

Upon saving this .env file, the cloud client will automatically join the IRC network. This will be 
visible in the DMS-Viewer in the different channels. 

 

Setting up the DMS-Edge-Client 
The DMS-Edge-Client is logically supposed to be the dumb endpoints in the topology. They can 
be imagined as slaves to the master which is the DMS-Cloud-Client. The behaviour is same as 
the DMS-Cloud-Client. The configuration is quite similar as well with minor differences. This 
client also reads the channels.json file as well as the .env file. 

The fields to be filled for the DMS-Edge-Client .env file are: 

1. DMS_IRC_SERVER= <the IRC Server URL> 
2. DMS_IRC_PASSWORD=<Password if any, if no password is there, leave this blank> 
3. DMS_IRC_PORT=<The IRC port to connect to. This is defined while setting up the 

DMS-Server> 
4. DMS_IRC_NICK=<the IRC nickname that will appear in the IRC channel. It must be 

unique such the one can distinguish between other devices> 
5. SERVER_LISTENER_PORT= this is the listening port where one can send there 

requests to send a message to the DMS-Server. (more on this in the “How DMS works“ 



 

section). Currently, in the docker version, this is not possible to change. We request you 
to refrain from making any change here.  

6. SWEEP_INTERNAL=Sweep interval within which the channel.json file will be parsed 
for updates on the new additional channels or routes (More on this in the “How DMS 
works” Sections) 

7. LICENSE_KEY= This is not mandatory as the key will be fetched at startup as well as 
every day. The cloud client will also send this key when the cloud client starts up 

8. PRODUCT_ID= This is the Product ID that can be fetched from the Baideac license 
portal. For the any client, this is a must. 

9. HASH_AUTOGENERATE= If marked as YES, a 54-character client ID will be 
generated and assigned to the EDGE_CLIENT_ID field. If the user wants to put in their 
own EDGE_CLIENT_ID, they can mark it as NO. However, in this case, the 
EDGE_CLIENT_ID must be filled 

10. EDGE_CLIENT_ID= This is the ID by which logically and its client can be identified. 
This is done to prevent confusions between the same named edge clients 

11. IS_CLOUD_CLIENT= This is a flag that denotes whether this client is a cloud Client or 
an edge client. Since we are setting up an Edge client we must market as NO 

12. DOCKER= For now, since there is no executable version, mark this as “true” 
13. VERSION= The version number of this version of DMS 

In order to check the version from outside the docker, is the following command.  

sudo docker exec -it <container ID> cat .env | grep VERSION 

Upon saving this .env file, the cloud client will automatically join the IRC network. This will be 
visible in the DMS-Viewer in the different channels. 

 

It must be noted that by default only 20 edge clients will be supported by the cloud client as 
per First Come First serve basis. Any client that joins after 20 edge clients are signed up 
with the cloud client, will be rejected by the cloud client. To increase this limit, the user 
must request the support team at support@baideac.com . The user will receive a new key 
with the updated limited. 

The way to delete any edge client which is not required anymore manually is under process 
and will be present in the upcoming releases. The only way to reset count at the cloud client 
end is to restart the cloud client. The edge clients will automatically connect themselves to 
the cloud client, and edge client ID which needs to be removed will no longer get added. 
Still, at no point there would be more than limit set for the edge clients trying to connect to 
the cloud client. 

 



 

Now, just set up is complete let us now exchange some messages. 

 

 

How DMS works 
The DMS Clients at runtime, can fetch edits as required for changing the routes or port numbers. 
This is done so that new routes can be added on the go without having to stop the Clients. These 
changes can be done at the channel.json file. The SWEEP_ INTERNAL field present in the .env 
file can be configured in milliseconds such that, within this interval the client will sweep through 
the channel.json file to fetch the updates. This way, at runtime, for application adding new 
channels or routes at runtime can be easily accommodated.  
 
 
The client when running, listens on the SERVER_ LISTENER _PORT preconfigured as 45000. 
One can send the message via a rest call to this server port.  
 
The format differs slightly for the different clients.  
 
For the DMS-Cloud-Client, it is 
 
curl --location 'http://localhost:45000/notify' \ 
--header 'Content-Type: application/json' \ 
--data '{ 
    "message": "Your Message", 
    "channel":"#your-channel", 
    "edgeclientId" : "the generated/assigned edge client ID" 
}' 
 
We need to add the edge client ID since when the cloud client is sending a message, the cloud 
client requires to know who to send the message to 
 
For the DMS-Edge-Client, it is 
 
curl --location 'http://localhost:45000/notify' \ 
--header 'Content-Type: application/json' \ 
--data '{ 
    "message": "Your Message", 
    "channel":"#your-channel” 
}' 



 

 
 
 
The port 45000 is SERVER_ LISTENER _PORT.  
Under the data field, we have 
- Message: the message one needs to send. It can be off any size. However, tests have been done 
only up to 20KB of data. (sending large files is not supported in the current version) 
- channel: This is the target channel where the Sender needs to send the message. The “#” is a 
must. 
- edgeclientId – (Only for cloud client). This ID is used to identify the different edge clients 
 
.  
Now, let’s walk through how can a client communicate with another client.  
 
Let's considered that the cloud client wants to send a message to the edge client. Assuming that 
the clients have the same channels.json file, they will join in the same channels. For the sake of 
this example, we will consider the channel “#poc_test” (the ‘#’ is a requirement always at the 
start of the channel name). 
 
A rest call with any script ( or Postman) can be created as below 
 
curl --location 'http://localhost:45000/notify' \ 
--header 'Content-Type: application/json' \ 
--data '{ 
    "message": "Hello World : This is a test", 
    "channel": "#Test-Channel1", 
    “edgeclientId” : “34198j9813n4dnjnckxjnwksjnckjner8vjnerc” 
}' 
 
The rest call is done towards the DMS-Cloud-Client. The message would be forwarded to the 
IRC Server. (the Server details are already mentioned in the .env).  
 
The edge client, at startup already is subscribed to the #poc_test channel as it is mentioned in the 
channel.json file. The DMS-Edge-Client receives the message and routes this message to any 
listening endpoint as per the channels.json file.   
 
If the message needs to be routed to another services, simply add the route as shown above in the 
channel.json example. The message will be forwarded to that service automatically.  
 
Now sending in the opposite way is almost similar, accept that the rest call body will not contain 
the edgeclientId field. It looks something like this 
 
curl --location 'http://localhost:45000/notify' \ 



 

--header 'Content-Type: application/json' \ 
--data '{ 
    "message": "Hello World : This is a test", 
    "channel": "# Test-Channel1” 
}' 
 
For more help, refer to the demo in the product page.  
 
 

DMS-Listener  
Baideac is providing a demo application which will double as a test endpoint. It simply takes in 2 
inputs, the port and the endpoint name. Once done, this will start and listen for messages coming 
in from the DMS Clients. 
 
As mentioned before, in the channel.json file, we mentioned the routes the messages will take 
when arriving on a channel. When a message arrives on the DMS Clients, it will route the 
messages to this DMS-Listener. The DMS-Listener will simply print out the message on the 
console.  
 
Note: This DMS—Listener must be on the same host as the DMS Clients. The configuration of 
the DMS-Listener must be as per the channel.json config. For more details, please check the 
product video. 
 
For any further help on any topics, please reach out to us. 
 

How the licensing works 
One of the most significant aspects of the product is the licensing. The license key works in 
tandem with the product ID. Both these items can be found in the Baideac licensing portal.  
 
Both the type of clients checks the validity of the license key. However, their checks are done 
slightly differently.  
 
The DMS-Cloud-Client must have the license key, otherwise it will not start. At startup, if the 
license key is valid, it will broadcast the license key in the #license-key channel. This is done 
such that, if there is a new license key, all the edge clients must be updated with it. Every day, 
the licence key is checked. Only if its valid, the DMS-Cloud-Client continuous to run. 
 



 

The DMS-Edge-Client does not need to have the license key at startup, however, if there is no 
license key, the edge client will keep requesting for the license key in the #license-key channel. 
When the DMS-Cloud-Client receives this request, immediately it responds to that edge client 
with the license key. A typical exchange can be seen below.  
 
If there is no license key at the DMS-Edge-Client end, the DMS-Edge-Client will reject all 
request to send messages to the IRC channels until the license key is successfully validity.  
 
Both the clients check for the license keys validity every day. 
 
 

References: 
For IRC Related information https://www.geeksforgeeks.org/internet-relay-chat-irc/ 
 
For DMS-Viewer related information : https://weechat.org/ 
 
 


